What is new in the new WHO Classification of lung cancer

And the impact on small biopsy diagnosis

Marie-Christine Aubry, M.D.
Mayo Clinic

Objectives

• Review the changes to lung cancer in the 2015 WHO classification
• Focus on the interpretation in small biopsies

2015 WHO Classification of Lung Cancer 4th Ed.

Adenocarcinoma

2004 WHO
• Variants
 • Mucinous (colloid)
 • Fetal
 • Signet ring
 • Clear cell

2015 WHO
• Variants
 • Mucinous
 • Colloid
 • Fetal
 • Enteric

Adenocarcinoma

2004 WHO
• Bronchioloalveolar cancer
 • Acinar
 • Papillary
 • Solid
 • Mixed

2015 WHO
• AIS
• MIA
• Lepidic predominant
• Acinar predominant
• Papillary predominant
• Solid predominant
• Micropapillary predominant

Adenocarcinoma, mucinous

• AD with goblet or columnar cells with abundant mucin
• All histologic patterns
 • Lepidic most common
• Immunostains
 • CK7+
 • CK20+
 • TTF1-
 • Napsin-
Adenocarcinoma, enteric subtype

- Resembles morphology of colorectal carcinomas
- Immunostains
 - Should retain CK7
 - CK20+
 - CDX2+
- Issues
 - Still could be 1ary GI, pancreaticobiliary

2015 WHO recommendation

- For non mucinous AD, assign most predominant growth pattern
- Grading scheme
 - Grade 1= lepidic
 - Grade 2= papillary and acinar
 - Grade 3= solid and micropapillary
- Prognostic value

AIS/MIA

- 3 cm and less
- No vascular, pleural invasion
- No airspace spread
- No necrosis
- Stromal invasion:
 - Absent in AIS
 - ≤ 5mm in MIA
- Predicts for 5-yr DFS of, or near 100%

Lepidic predominant

- 3 cm and less
 - >5mm of stromal invasion
- Pleural or vascular invasion
- Airspace spread
- Necrosis
- > 3cm
 - Even if ≤ 5mm or no invasion

Reproducibility?

- 534 cases – 2 observers
- Exact match 51.7%
- 27.3% in same prognostic score
- 21% with different prognostic score
LPA

Features of invasion

Papillary

Micropapillary

Active fibroblasts/ Desmoplasia = Invasion

Interobserver variation

<table>
<thead>
<tr>
<th>Rater 1</th>
<th>AIS</th>
<th>MIA</th>
<th>IA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIS</td>
<td>11 (3.7%)</td>
<td>3 (1.0%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>MIA</td>
<td>6 (2.0%)</td>
<td>71 (24.2%)</td>
<td>12 (4.1%)</td>
</tr>
<tr>
<td>IA</td>
<td>0 (0.0%)</td>
<td>36 (12.2%)</td>
<td>155 (52.7%)</td>
</tr>
</tbody>
</table>

Boland et al

More than one area of invasion

- Several recommendations
 - Measure the largest
 - In the WHO section on MIA and LPA
 - Estimate the % of invasive components
 - X by the overall tumor diameter
Squamous cell carcinoma

2004 WHO
- Squamous cell ca

2015 WHO
- Keratinizing
- Non-keratinizing
- Basaloid

Basaloid SQCC

- Nested architecture with palisading
- >50-100%
- Immunostains
 - p63 and p40+
 - CK5/6 +
 - TTF-1-
 - NE markers
 - <10% cases
 - Focal

Differential diagnosis
- LCNEC/SCLC
- NUT carcinoma
- Adenoid cystic ca

Adenosquamous cell carcinoma

2004 WHO
- Adenosquamous cell carcinoma

2015 WHO
- Adenosquamous cell carcinoma

 "...components of both SQCC and AD with each component constituting at least 10% of the tumor. Definitive diagnosis requires resection..."

Definitive diagnosis requires resection...

Adenosquamous cell carcinoma

AD component SQC component

Immunostains

- TTF-1
 - 2 clones with different sensitivity and specificity
 - SPT24 is very sensitive not as specific
 - Can be + in SQCC
- p63
 - Up to 30% of AD + p40 more specific
- CK7
 - Up to 20% of SQCC +
 - Up to 10% of AD -

Immunostains in Adenosquamous cell ca

- Different tumor cells with different immunoprofile
- If the same tumor cells stain for TTF-1 and p63
 - It is NOT adenosquamous cell carcinoma
 - It is AD with p63 staining
Sarcomatoid carcinoma

2004 WHO
- Pleomorphic
- Spindle cell
- Giant cell
- Carcinosarcoma
- Pulmonary blastoma

2015 WHO
- Pleomorphic, spindle and giant cell
- Carcinosarcoma
- Pulmonary blastoma

Large cell carcinoma

2004 WHO
Large cell carcinoma
- Large cell NE carcinoma
- Basaloid
- Lymphoepithelioma-like
- Clear cell
- Rhabdoid

2015 WHO
Large cell carcinoma
- Undifferentiated NSCC
- Lacks cytological, architectural and immunohistochemical features of AD, SQCC, LCNEC and SCLC
- Requires resected tumor
Neuroendocrine tumors

2004 WHO
- Small cell carcinoma
- Carcinoid tumors
 - Typical
 - Atypical

2015 WHO
- Neuroendocrine tumors
- Small cell carcinoma
- Large cell NE carcinoma
- Carcinoid tumor
 - Typical
 - Atypical

Small cell carcinoma
- Still defined by H&E morphology
- About 10% of SCLC negative or focally weakly + for NE markers
- Up to 30% NSCLC + for NE markers
- IHC useful IF
 - SCLC vs SQCC
 - TTF-1+/p40-
 - NOT p63 (20% +)
 - SCLC vs carcinoid
 - Ki-67

Large cell neuroendocrine carcinoma
- Neuroendocrine morphology
 - Rosettes
 - Trabecula
 - Peripheral palisading
- Nucleoli prominent
- >10 mitosis/HPF
- AND expresses IHC markers

Other unclassified
- Lymphoepithelioma-like
- NUT carcinoma
 - EBV ISH
Interpretation on small biopsies
Recommendations of the 2015 WHO

GOAL
- To make a diagnosis on H&E or at least with the smallest number of immunostains
- Save tissue for molecular testing
 - Most cancers in advanced stage
 - If surgically resectable not as critical

Remember that...
- ...our diagnosis dictates mostly additional studies to be performed...
 - Everything but SQCC may be tested for EGFR, ALK, ROS etc
- ...eventually SQCC with own studies

Tissue Processing
- Do not decalcify
 - If can’t be avoided, consider making 2 blocks
 - 1 with the calcified tissue
 - 1 with softer tissue
- If more than 1 core or “abundant” aggregate of tissue
 - Consider making 2 paraffin blocks

Most useful stains in Lung 1ary
- TTF-1 and p40
- Could even argue p40 is sufficient
 - SQCC versus all others

A few things about IHC
- If not sure about tumor type
 - Carcinoma by far most common
 - Keratin stains with unstained slides
 - Keratin, CD45, S100 prot with unstained slides
 - Use morphology to guide stains
 - Best avoid many stains in 1st round
 - Avoid exhausting block
A few things about IHC

- If considering metastasis from another site
 - CDX2 can be + in Lung AD
 - ER can be + in Lung AD
 - STP24 clone of TTF-1 can be + in primaries from other sites

 Use clinical/radiologic information, compare to prior specimens, use and interpret IHC cautiously

A few things about IHC

- Neuroendocrine markers
 - Do *only* if tumor looks like a carcinoid (or LCNEC)
 - SCLC can be negative – H&E diagnosis
 - Many NSCLC that are not carcinoid or LCNEC can be focally +

Non small cell carcinoma

- 68 yo male
- Smoker
- Lung mass with mediastinal adenopathy

Diagnosis

Non-small cell carcinoma, NOS
Adenosquamous cell carcinoma?

• NO
 • Not 2 distinct cell morphology
 • Not 2 distinct cell population with different immunoprofile
 • The cells + for TTF-1 are also positive for p40
 • p40 trumps

Diagnosis
Non-small cell carcinoma, favor SQCC
Diagnosis

Non-small cell carcinoma, NOS

Comment: AD and SQC components present, could represent ADSQC carcinoma

Diagnosis

Non-small cell carcinoma with spindle cells

Comment: Could represent a pleomorphic, spindle cell and/or giant cell carcinoma i.e. sarcomatoid carcinoma
Benign versus Neoplastic

- If benign reactive pneumocyte hyperplasia, reactive to what?
- AAH?
 - Size ≤ 5mm
- Radiologic context is very helpful and knowing that the lesion has actually been sampled

Clinical and radiologic findings

- 65 yo woman
- Single GGO 2.5cm

Concluded that it is neoplastic

- Adenocarcinoma with pure lepidic growth, no stromal invasion....
- AIS? MIA? LPA?
Diagnosis?
Adenocarcinoma with lepidic pattern
Comment: Although no invasion identified, an invasive component which is unsampled cannot be excluded

How much is too little?
Amount of tissue needed for molecular testing

<table>
<thead>
<tr>
<th>Test</th>
<th>Thickness</th>
<th># slides</th>
<th># tumor cells</th>
<th>% tumor cells</th>
<th>Amount of DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFR</td>
<td>5 μ</td>
<td>5</td>
<td>5,000 3X6mm²</td>
<td>10</td>
<td>10ng</td>
</tr>
<tr>
<td>K-ras</td>
<td>5 μ</td>
<td>5</td>
<td>5,000 3X6mm²</td>
<td>20</td>
<td>10ng</td>
</tr>
<tr>
<td>50 gene panel</td>
<td>5 μ</td>
<td>10</td>
<td>5,000 5X6mm²</td>
<td>20</td>
<td>30ng</td>
</tr>
<tr>
<td>Mayo Lung Cancer panel</td>
<td>5 μ</td>
<td>10</td>
<td>5,000 5x6mm²</td>
<td>20</td>
<td>10ng DNA, 10ng RNA</td>
</tr>
<tr>
<td>Foundation One</td>
<td>4 μ</td>
<td>8-10</td>
<td>NOS</td>
<td>20</td>
<td>NOS</td>
</tr>
<tr>
<td>Caris</td>
<td>4 μ</td>
<td>15</td>
<td>25mm²</td>
<td>20</td>
<td>NOS</td>
</tr>
</tbody>
</table>

Questions & Discussion