Classification of congenital lung cysts and malformations

Minnesota Society of Pathologists Fall Meeting
October 29, 2016

Megan K. Dishop MD
Medical Director, Pediatric Anatomic Pathology
Children’s Hospitals and Clinics of Minnesota
Minneapolis-St. Paul, Minnesota, USA

History of congenital lung cysts

- Documented as early as 1859
- Chin & Tang 1949 – Congenital adenomatoid malformation
- Van Dijk 1972 – Congenital cystic adenomatoid malformation (cystic, intermediate, solid)
- Stocker 1977 – CCAM types 1, 2, 3
- Stocker 1994 – CCAM types 0, 1, 2, 3, 4

Stocker Classification, current

- “Congenital Pulmonary Airway Malformation” (CPAM)
- Type 0 CPAM, acinar dysgenesis (1-2%)
- Type 1 CPAM, large cyst type (65%)
- Type 2 CPAM, medium cyst type (10-15%)
- Type 3 CPAM, solid/adenomatoid type (5-8%)
- Type 4 CPAM, peripheral cyst type (10-15%)

Conceptual relationship to anatomy

CPAM type 0

- Acinar dysplasia/dysgenesis
- Described in 1986.
- Severe, diffuse, bilateral. Unresectable and incompatible with life. Survive a few hours.
- Term or preterm, immediate respiratory distress.
- Reported in siblings, likely genetic.

CPAM type 1

- “Large cyst” type
- Usually first week to month, but also adolescents
- Single or multiple large cysts (3-10cm), surrounded by smaller cysts.
- Lined by ciliated columnar epithelium; muscle, cartilage
- 45% with mucigenic cells, precursor to BAC

CPAM type 2
- “Medium/small cyst” type
- “Exclusively in 1st year of life”; “poorer outcome due to associated anomalies”
- Smaller cysts (0.5-2 cm): “Back-to-back” bronchiolar structures; thin muscular layer
 - Rhabdomyomatous dysplasia
 - No cartilage or mucigenic cells
- Seen in 50% of ELS.

CPAM type 3
- “Small cyst”, “solid”, “adenomatoid”
- First days-months of life; high mortality; polyhydramnios, fetal hydrops
- Large unilateral mass; lobe or lung.
- Small cysts (<0.2 cm); resembles immature lung; stellate irregular bronchiolar structures.
- No mucigenic epithelium, cartilage, or skeletal muscle.

CPAM type 4
- “Peripheral cyst” type
 - “hamartomatous proliferation of the distal acinus”
- Newborn to 4 years.
 - Single lobe (80%); rarely bilateral
 - Respiratory distress +/- PTX
- Large air-filled cysts
 - Lined by alveolar epithelial cells or low columnar epithelium.
 - Loose mesenchymal tissue with prominent vasculature.

Problems with CPAM classification
- Stocker classification is not comprehensive.
 - Lesions not included: bronchial atresia, ILS, bronchogenic cyst
 - Some lesions do not fit “classic patterns”, ex. fetal
- “CPAM” encompasses broad morphologic spectrum
 - Based on gross and microscopic anatomy, not pathogenesis
- No standard criteria, definitions or terminology bridging disciplines
 - Pathology, radiology, pediatric and fetal surgery, maternal-fetal medicine, pediatric pulmonary medicine, neonatology
- A very confusing medical literature:
 - CCAM vs. CPAM, CPAM with sequestration (hybrid lesion?)
 - Misidentification of cystic PPB as CPAM

Langston Classification
- **Stocker type 0** = Acinar dysgenesis
- **Stocker type 1** = CPAM, large cyst type
- **Stocker type 2** = Intrauterine bronchial obstruction (bronchial atresia) sequence
 - Microcystic developmental abnormality seen in BA, ILS (BA with systemic arterial / venous connection), and ELS
- **Stocker type 3** = Pulmonary hyperplasia (adenomatoid or solid type)
- **Stocker type 4** = Pleuropulmonary blastoma, type 1

Bronchial Atresia - the hidden pathology

- Bronchial atresia sequence
 - Pattern of maldevelopment widely associated with airway obstruction (bronchial atresia, ILS, ELS)
 - Rarely without identifiable airway obstruction
- Common finding in many types of developmental lung lesions
 - 22/25 lung resections of IUUS identified lesions at Children’s Hospital Boston assessed for bronchial atresia
 - 14 CPAM, 9/13 assessed with BA
 - 3 CLO, 2/3 with BA
 - 1 ELS with BA
 - 1 ILS (not assessed)
 - 6 CPAM/seq 5/5 assessed with BA

Bronchial Atresia

- Isolated
 - Segmental or subsegmental
 - Formerly rarely seen in infancy
 - Later presentations: incidental x-ray finding, recurrent pneumonia, or dyspnea
 - Now common pathology of many IUUS lesions
 - Usually asymptomatic at birth
 - Gross pathology
 - Lobar enlargement, sometimes pseudofissures
 - Bulge at hilum sometimes marks atretic bronchus
 - Subdiaphragmatic and mucus in regional airways
 - Microcystic parenchymal maldevelopment, hyperinflation
You won’t find it if you don’t look.

- Bronchial atresia is a gross diagnosis made by carefully examining the lobe or lung specimen.
 - Microscopic examination alone can only suggest the diagnosis.
- Section lungs and lobectomies in a parasagittal plane, moving lateral to medial.
 - Segmental distribution of cysts.
 - Mucus stasis with central mucocele.
 - Point of atresia identified by retrograde probe of most dilated bronchial profile/cyst.

Bronchial Atresia and Sequestration

- BA with Systemic Vascular Connection
 - Also called: Intralobar sequestration (ILS)
 - Except for systemic vascular connection, identical gross and histology with isolated
 - More frequent in left lower lobe
 - Systemic artery usually single and from distal thoracic or proximal abdominal aorta, but multiple vessels and a wide variety of origins reported
 - Systemic venous connection, less common
- Intralobar sequestration is congenital (not acquired).
 - Numerous examples detected prenatally.
 - Examples of ILS and ELS in same patient.
Extralobar Sequestration

- Aberrant pulmonary mesenchyme develops apart from the normal lung, "accessory lobe"
- Location
 - usually thoracic (L>R)
 - anterior or posterior mediastinum, infradiaphragmatic, retroperitoneal typically near adrenal
- Relation to adjacent tissues
 - Systemic artery typically from descending thoracic aorta
 - Rarely communicates with esophagus or stomach
- Associated abnormalities - congenital diaphragmatic hernia
- Often asymptomatic
 - Sometimes hydrothorax, fetal hydrops, death

4 day old infant girl with congenital diaphragmatic hernia repair.
Complex Bronchopulmonary Foregut Malformation

Congenital lobar overinflation
- Bronchomalacia, webs, stenoses, airway compression by vascular structures

Bronchogenic Cyst

CPAM 3
- Massively enlarged lung, preterm stillborn – multilobar bronchial narrowing
Pulmonary hyperplasia
(19-20 wga)
Due to laryngeal atresia

4 month old male infant with prenatal diagnosis of 5 cm cystic lesion in LUL
Pleuropulmonary Blastoma

- **TYPE 1** Cystic (low-grade)
- **TYPE 2** Cystic and solid
- **TYPE 3** Solid (high-grade)

- Type 1 (purely cystic) PPB is easily mistaken for Stocker type 4 CPAM (peripheral large cyst type).
 - Is type 4 CPAM an underdiagnosed, undersampled, or regressed type 1 PPB? Yes!

PPB: Associated Neoplasms

- Germline DICER1 abnormalities in PPB families
- Dysplastic/neoplastic diseases in 25% of PPB patients' relatives, often siblings
- Multicentric PPB, PPB in siblings/cousins
- Cystic nephroma, Wilms tumor
- Ovarian/testicular Sertoli-Leydig cell tumors
- Germ cell tumors
- Lymphoma/leukemia
- Thyroid malignancy
- Pituitary blastoma
- Various sarcomas...
Pathogenesis of congenital lung cysts

- Acinar dysgenesis (CPAM 0): Diffuse developmental/genetic disorder
- CPAM 1: Unknown
 - benign cystic neoplasm vs. malformation
- BA/ILS/ELS (CPAM 2): Bronchial obstruction in utero
- CPAM 3: Unknown
 - hyperplasia vs. neoplasm vs. hamartoma
- PPB type 1 (CPAM 4): Neoplasm

Congenital lung malformations, surgical specimens, cumulative data from 11 year review (1990-2000, Houston) and 10 year review (2000-2009, Denver)

<table>
<thead>
<tr>
<th>Site</th>
<th>St. Louis</th>
<th>Mich</th>
<th>London</th>
<th>Houston</th>
<th>Wash DC</th>
<th>Saudi</th>
<th>Belgium</th>
<th>Japan</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLO</td>
<td>16</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>10</td>
<td>37</td>
<td>5</td>
<td>3</td>
<td>74</td>
</tr>
<tr>
<td>CAM</td>
<td>13</td>
<td>22</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>14</td>
<td>4</td>
<td>68</td>
</tr>
<tr>
<td>BC</td>
<td>6</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>13</td>
<td>13</td>
<td>44</td>
</tr>
<tr>
<td>PS</td>
<td>6</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>20</td>
<td>5</td>
<td>16</td>
<td>6</td>
<td>76</td>
</tr>
<tr>
<td>ILS</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td>9</td>
<td>16</td>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td>ELS</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>#</td>
<td>35</td>
<td>45</td>
<td>12</td>
<td>22</td>
<td>61</td>
<td>57</td>
<td>48</td>
<td>26</td>
<td>306</td>
</tr>
</tbody>
</table>

Time for re-classification?

- Our goal should be to re-define and classify according to pathogenesis
 - CPAM 1 and CPAM 3 remain poorly understood
- Stocker classification describes a set of morphologic patterns, which should lead to search for underlying etiology
 - Clinical – imaging – gross – microscopic correlation
 - CPAM 2 pattern – bronchial atresia sequence
 - CPAM 4 pattern – regressed/undersampled cystic PPB
Conclusion: Future goals

- Resolve pathogenesis of large cyst CPAM (type 1)...
- Resolve pathogenesis of solid CPAM (type 3)...
- Provide definitions of cystic lung malformations which are inclusive of fetal phenotypes...
- Unify terminology used by pathologists and other medical disciplines...