Lung Biopsy in Children
Patterns, Pearls, and Pitfalls
Minnesota Society of Pathologists
Fall Symposium, October 29, 2016

Megan K. Dishop MD
Medical Director of Anatomic Pathology
Children’s Hospitals and Clinics of Minnesota
Minneapolis-St. Paul, MN
Adjunct Professor of Pediatrics, University of Colorado School of Medicine

Learning Objectives

- List the differential diagnosis of a “normal” lung biopsy.
- Describe the clinical associations with a pattern of alveolar simplification.
- Recognize the histologic patterns associated with the genetic disorders of surfactant metabolism.
- Describe the clinical associations with patterns of pulmonary lymphoid hyperplasia.
- Correlate clinical and radiologic information with histologic patterns on lung biopsy to develop clinicopathologic differential diagnosis.

Pediatric Lung Biopsy: Indications

- Nodules, esp. immunosuppressed and oncology pts.
- Exacerbation or disproportionate severity in chronic neonatal lung disease
- Factors causing pulmonary hypertension – cardiac vs. lung parenchymal vs. intrapulmonary vasculature
- Obstructive airway disease – t/o BO
- Chronic tachypnea – t/o NEHI vs. other
- Cause of ILD – t/o genetic surfactant disorder
 - Inflammation vs. fibrosis
- Common goal: Provide direction for further diagnostic evaluation and therapy.

Questions prior to lung biopsy

- Site of biopsy
 - Affected lobe; region of involvement
 - If diffuse, any lobe – except not the tip of the right middle lobe or lingula.
- Size of biopsy
 - 2-3 cm wide and at least 1 cm deep
 - Sampling of muscular pulmonary arteries and terminal bronchioles

Faculty Disclosure

- Megan K. Dishop: No financial conflicts of interest
Microscopic examination

- Anatomic compartments of the lung
 - 1. Alveolar spaces
 - 2. Interstitium
 - 3. Airways (bronchi and bronchioles)
 - 4. Vasculature (arteries, veins, lymphatics)
 - 5. Pleura and interlobular septa
- Use of microscopic description in reporting
- Integration of clinical and radiologic information into final diagnosis and comment

Patterns in Pediatric Lung Biopsy

- Normal or near-normal
- Alveolar-filling
- Interstitial cellularity
- Interstitial fibrosis
- Lymphoid proliferation
- Chronic bronchiolitis and bronchiolectasis
- Vasculopathy and vasculitis
- One or more patterns...

CATEGORY

SPECIFIC DISEASE ENTITIES

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>SPECIFIC DISEASE ENTITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffuse developmental disorders</td>
<td>Acinar dysgenesis, congenital alveolar dysplasia, alveolar capillary dysplasia with malalignment of pulmonary veins</td>
</tr>
<tr>
<td>Growth abnormalities</td>
<td>Pulmonary hypoplasia, chronic neonatal lung disease, related to chromosomal disorders and congenital heart disease</td>
</tr>
<tr>
<td>Specific conditions of undefined etiology, likely reactive</td>
<td>Neuroendocrine hyperplasia of infancy, pulmonary interstitial glycogenosis/fibroblast cell interstitial pneumonitis</td>
</tr>
<tr>
<td>Surfactant dysfunction disorders and related conditions</td>
<td>SP-A, SP-C, ARCAT, tannin protein intolerance</td>
</tr>
<tr>
<td>Disorders of the normal host</td>
<td>Infectious and post-infectious processes, related to environmental agents, aspiration, eosinophilic pneumonia</td>
</tr>
<tr>
<td>Disorders related to systemic disease processes</td>
<td>Immune-mediated disorders, metabolic disease, Langerhans cell histiocytosis</td>
</tr>
<tr>
<td>Disorders of the immunocompromised host</td>
<td>Opportunistic infections, related to therapeutic intervention, transplantation and rejection</td>
</tr>
<tr>
<td>Disorders masquerading as interstitial disease</td>
<td>Arterial, venous, lymphatic disorders; congestive changes related to cardiac dysfunction</td>
</tr>
<tr>
<td>Unclassified</td>
<td>End-stage lung disease, non-diagnostic, inadequate</td>
</tr>
</tbody>
</table>

Normal or near-normal lung biopsies in children
Normal or near-normal pattern

- Abnormal alveolarization ("alveolar simplification")
 - Look for deficiency of alveolar septation
 - Correlate with clinical hx and chest CT
 - Associations:
 - Prematurity
 - Hypoplasia
 - CHD
 - Chromosomal
 - Neonatal injury
 - TTF1/NKX2.1

Case: Persistent tachypnea

- 3 month old term infant with tachypnea noticed 3 weeks prior to presentation.
 - RSV infection at 1 month of age.
 - Normal echocardiogram.
 - CXR hyperinflation.
 - CT patchy ground glass opacities.

Neuroendocrine cell hyperplasia of infancy (NEHI)

- Persistent tachypnea of infancy
- Oxygen requirement for months-years
- Diagnosis:
 - Increased airway neuroendocrine cells (>10%+)
 - Normal 5-6%
 - Bombesin stain vs. chromogranin, synaptophysin
 - Large neuroepithelial bodies
 - Exclusion of other histologic patterns
 - Lack of significant airway fibrosis, interstitial disease or vasculopathy
 - Typical clinical and imaging features
- Etiology unknown
 - Developmental vs. post-inflammatory
Obliterative bronchiolitis

- Bronchiolitis obliterans syndrome (BOS)
- PFTs – obstructive
- CT – mosaic perfusion, regional air-trapping
- Differential diagnosis:
 - Post-viral sequela - adenovirus
 - Chronic aspiration
 - Stevens-Johnson syndrome
 - Chronic airway rejection – lung transplant
 - Chronic GVHD – bone marrow transplant

- Histology:
 - Airway fibrosis (constriction or obliteration of lumen)
 - ‘Unpaired’ pulmonary arteries
 - Mucus stasis
 - Distension of airspaces/alveolar ducts
 - Periairway foamy macrophages, cholesterol clefts

- Sampling error
Aspiration injury

- Difficult diagnosis – commonly, non-specific findings
 - BAL lipid-laden macrophages
 - Airway-associated lymphoid hyperplasia
 - Organizing pneumonia
 - Endogenous lipid pneumonia
- Foamy macrophages/cholesterol
- Other clues:
 - Granulomas and food particles
 - Exogenous lipid pneumonia – mineral oil
Case. DIP/PAP in infant

- 6 week old girl with hypoxia and respiratory insufficiency
 - Term gestation, discharged on dol 5
 - CXR diffuse infiltrates
 - CT ground glass opacities in “crazy paving” pattern, septal thickening
 - Lung biopsy performed

Alveolar filling and Interstitial cellularity in children
Surfactant Dysfunction Disorders

ABCA3
- Expressed on surface of lamellar bodies
- Lipid transport
- Abnormal processing of lamellar bodies

Surfactant Dysfunction Disorders

- **Etiology**
 - Genetic mutations in surfactant proteins
 - SP-B (SFTPB, chr 2p12-p11.2, AR)
 - SP-C (SFTPC, chr 8q21, AD)
 - Genetic mutations in ATP binding cassette transporter
 - ABCA3 (chr 16p13.3, AR)
 - *Now*, the most common cause of surfactant dysfunction disorders
 - Surfactant dysregulation
 - TTF1/NKX2-1 mutations/deletions
 - GM-CSF receptor mutations
 - CSF2RA (X-linked)
 - CSF2RB (chr 22)

Surfactant Dysfunction Disorders: Histologic Spectrum

Histologic Patterns in Infancy
- Pulmonary alveolar proteinosis pattern (SPB, ABCA3)
- Desquamative interstitial pneumonia pattern
- Chronic pneumonitis of infancy pattern (SPC)

Histologic patterns in Older children and Adults
- Nonspecific interstitial pneumonia (ABCA3, SPC)
- Pulmonary fibrosis (SPC)

Spectrum of patterns: PAP, DIP, CPI, NSIP, IPF
Chronic Pneumonitis of Infancy
A Unique Form of Interstitial Lung Disease Occurring in Early Childhood

Anna-Louise A. Katzstein, M.D., Lawrence P. Gordin, M.D.,
Michael Oliphant, M.D., and Philip T. Swenson, M.D.

ABCA3 disease

Older children, adolescents
• 10-25 years old.

ABCA3 Mutations associated with pediatric ILD

6 year old girl with possible Hypersensitivity pneumonitis
Nonspecific interstitial Pneumonia (NSIP) pattern

7 month old Known SPC mutation

6 year old girl with possible Hypersensitivity pneumonitis
Nonspecific interstitial Pneumonia (NSIP) pattern
ABCA3 mutations – endogenous lipoid pneumonia pattern

TTF1/NKX2.1 deficiency
- "Brain-lung-thyroid syndrome"
- Clinical clues to diagnosis
 - Hypothyroidism
 - Neurologic symptoms
- Early transcription factor in lung development
- Regulates production of surfactant proteins
- Variable histopathology
 - "Normal"
 - Alveolar growth abnormality
 - Pulmonary alveolar proteinosis/chronic pneumonitis of infancy

Surfactant Dysfunction Disorders: Ultrastructural Features
- SP-B mutations – Abnormal lamellar bodies; Multivesicular and multilamellated bodies.
- ABCA3 mutation – Abnormal dense bodies ("fried egg")
- SP-C mutation – Normal or non-specific lamellar body structure.
- TTF1/NKX2-1 mutations – Normal or non-specific lamellar body structure.
Normal

SP-B

Abca3 mutations

Acquired pulmonary alveolar proteinosis (AML on therapy)

Pitfall: organizing hyaline membranes or fibrin aggregates

Pitfall: Epithelial cell necrosis from overwhelming respiratory viral infection (RSV in SCID)
Case. Pulmonary fibrosis in adolescent

- 14 year old girl presents for lung transplantation
 - Respiratory insufficiency beginning in infancy
 - Biopsy at 2 years of age: CPI
 - CT shows honeycomb fibrosis with septal thickening and cystic changes.
 - Family history:
 - Father recently diagnosed with chronic lung disease in 40’s; non-smoker
 - Paternal grandfather died of idiopathic pulmonary fibrosis

Interstitial fibrosis in children
Pulmonary fibrosis in children

- Bronchopulmonary dysplasia
 - Historic; improves over time
- Organizing diffuse alveolar damage
- Chemoradiation
 - Subpleural and paraseptal (XRT)
-ILD with progressive changes
 - Genetic disorders of surfactant metabolism (ABCA3, SFTPC)
 - Chronic hypersensitivity pneumonitis
 - Collagen vascular disease (scleroderma, DM, MCTD, other)
- Other rare disease: DNA repair defects

Case. Pulmonary nodules

- 4 year old girl presents with mild cervical lymphadenopathy, splenomegaly, and diarrhea
- GI biopsies show non-specific lymphonodular hyperplasia
- Cough and hypoxia
- CT shows multiple bilateral nodules, ground glass opacities, and mild bronchiectasis
- Lung biopsy
Pulmonary lymphoid hyperplasia

- Primary immunodeficiency
 - CVID, XLP
- Acquired immunodeficiency (HIV)
- Immune dysregulation
 - Autoimmune lymphoproliferative syndrome (ALPS)
 - Mutations in FAS gene
 - Double-negative (CD4-CD8-) T cells
 - Autoimmune polyendocrinopathy syndrome (APS)
 - Mutations in autoimmune regulator (AIRE) gene
 - Autoantibodies to various organs, including lung
 - Hemophagocytic lymphohistiocytosis
- Autoimmune disease (collagen vascular disease)
- Rule out lymphoma/leukemia
Common variable immunodeficiency
Patterns:
• Follicular bronchiolitis
• Lymphoid interstitial pneumonia (LIP)
• Granulomatous-lymphocytic interstitial lung disease (GLILD)

Collagen vascular disease
• General histologic patterns
 - Lymphoid hyperplasia
 - Lymphoid interstitial pneumonia (LIP)
 - Non-specific interstitial pneumonia (NSIP)
 - Differential Dx: CVD, HP, ABCA3/SP-C mutations
 - Increased interstitial plasma cells
 - Lymphocytic/constrictive bronchiolitis
 - Vasculopathy
 - Vasculitis
 - Pleuritis/pleural fibrosis

Pulmonary hemosiderosis in children

Pulmonary hemosiderosis
• Accumulation of hemosiderin-laden macrophages
 - When this is the predominant pattern, consider the following differential diagnosis:
 • Vasculitis (arteritis, capillaritis)
 • Vasculopathy (pulmonary arteriopathy, chronic congestive vasculopathy)
 • Other interstitial lung disease
 • Resolving hemorrhage related to acute lung injury
 • Idiopathic pulmonary hemosiderosis
Pulmonary hemosiderosis

- Accumulation of hemosiderin-laden macrophages
 - Features that suggest a vasculitis or acute capillaritis:
 - Repeated episodes of hemorrhage
 - Anemia (acute drop in hemoglobin/hematocrit)
 - Fluffy bilateral infiltrates or consolidation on chest x-ray
 - Positive serology: ANA, PR3 (c-ANCA), MPO (p-ANCA)
 - Helpful if present. Negative serology does not exclude diagnosis.

Pulmonary hemorrhage and hemosiderosis

- "Soft signs" of vasculitis
 - Fibrin – low power clue to areas of capillaritis
 - Organizing pneumonia – implies alveolar wall damage and repair
 - Lymphoid hyperplasia – implies immunologic activation
 - Look for increased interstitial or alveolar neutrophils, greater than background circulating neutrophils
 - Karyorrhexis (leukocytoclasis) or necrosis is helpful
Clinical correlation is important
- Exclude renal hemorrhage (ex. Crescentic glomerulonephritis), other systemic vasculitis
- Serologic testing
 - P-ANCA (MPO) – most often with microscopic polyangiitis, isolated pulmonary capillaritis
 - C-ANCA (PR3) – most often with granulomatosis with polyangiitis (Wegener granulomatosis)
 - May be negative, even during active vasculitis.
 - May become positive later in disease course.
- Pre-treatment with steroids
 - May diminish neutrophils in biopsy, and therefore lead to descriptive or “suggestive of” diagnosis
 - Sampling error

Chronic congestive vasculopathy
- Hemosiderosis
- Congestion
- Alveolar hemorrhage
- Venous thickening or arteriolization
- Lymphatic muscularization

Idiopathic Pulmonary Hemosiderosis
Hemosiderosis only
Clinical diagnosis of exclusion
No vasculopathy or vasculitis in biopsy
Cannot rule out inactive or treated vasculitis...

Summary: Pattern-based Differential Diagnosis
- Normal or near-normal
- Alveolar-filling
- Interstitial cellularity
- Interstitial fibrosis
- Lymphoid proliferation
- Chronic bronchiolitis and bronchiolectasis
- Vasculopathy
- One or more patterns...
Abnormal alveolarization
- Look for deficiency of alveolar septation
- Correlate with clinical history and chest CT

Neuroendocrine cell hyperplasia of infancy
- Bombesin stain

Obliterative bronchiolitis
- Movat pentachrome or elastic trichrome

Abnormal vascular flow
- Edema fluid washed out
- Consider pulmonary overcirculation, capillary leak, AVM or telangiectasia, shunt physiology

Pulmonary alveolar proteinosis
- Genetic surfactant disorders, GM-CSF antibody, macrophage dysfunction (immunologic impairment)

Macrophages (desquamative interstitial pneumonia)
- Genetic surfactant disorders, drug reaction, inhalational injury
- Hemosiderin: if abundant, consider chronic congestive vasculopathy, vasculitis
- Foamy macrophages: aspiration, surfactant disorder, resolving pneumonia, airway obstruction, storage disorders

Neutrophils
- Bacterial pneumonia, capillaritis

Lymphocytes/histiocytes
- Hypersensitivity pneumonitis, sarcoidosis, immunologic disease
- Organizing pneumonia
- Causes of alveolar wall injury
 - Infection, aspiration, HP, ILD, idiopathic (cryptogenic)

Macrophages
- Storage disease, histiocytosis

Neutrophils
- Infection, capillaritis, SLE

Eosinophils
- Eosinophilic pneumonia, Churg-Strauss syndrome, parasitic infection, foreign body response

Lymphocytes
- Viral or aspiration pneumonitis, hypersensitivity pneumonitis, surfactant disorders

Plasma cells
- Autoimmune/collagen vascular; some viral

Interstitial fibrosis pattern
- Fibrosis +/- cellularity
 - Genetic surfactant disorders
 - Collagen vascular disease
 - Hypersensitivity pneumonitis
 - Resolved org DAD
 - Chemotherapy/radiation injury
 - DNA repair defects
Lymphoid proliferation patterns

- Follicular bronchiolitis
 - Congenital or acquired immunodeficiency
 - Autoimmune disease
 - EBV infection
 - Idiopathic
- Lymphoid interstitial pneumonia (LIP)
 - Congenital or acquired immunodeficiency (esp. HIV)
 - Autoimmune (esp. Sjogren syndrome)

Chronic bronchiolitis or bronchiolectasis patterns

- Lymphocytic bronchiolitis
 - Respiratory viral infection, PCD, immunodeficiency
 - GVHD (BMT), ACR (lung tx)
- Constrictive/obliterative bronchiolitis
 - Consider pentachrome or elastic trichrome
 - s/p necrotizing bronchiolitis: viral, MFS
 - GVHD (BMT), ACR (lung tx)
- Chronic bronchiolitis with acute inflammation
 - Cystic fibrosis
 - Secondary infection in chronic airway disease

Pulmonary vasculopathy patterns

- PA medial hypertrophy
 - Assoc. with ILD or alveolar simplification
 - Assoc. with congenital heart disease
 - ACD, pulmonary venous disease
- PV arterialization (chronic congestive vasculopathy)
 - Impaired pulmonary venous outflow or elevated left cardiac pressures
 - Correlate with echo and cath. R/O TAPVC, PVS, CMP
- PVOD
 - Use elastic trichrome or pentachrome to highlight obliterated veins

Questions and Discussion